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Optical nonlinearities in crystals are for the first time analyzed from the rotational-invarj-
ance point of view. Several previous theoretical results are discussed on the basis of the
decomposition of a tensor into irreducible parts. A proportionality between the spontaneous
polarization and the vector parts of the nonlinearities is established, leading to new relations
for the second-harmonic generation and linear electrooptic-effect coefficients in the § for-
mulation.

1. INTRODUCTION by thg_ second-rank tensor Y__relating the electric

field E and the polarization @

Plw)=X Ew). (1)

The optical properties of crystals can be de-
scribed by the constitutive relations between elec-
tromagnetic field and induced polarizations. The

linear properties are, for instance, determined The tensor x characterizes intrinsic properties
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of a given material which, unlike the components
Xi;, is not affected by a change of the coordinate
system. In nondissipative and nonoptically active
media there are in general six independent x;;.
Nevertheless, all the linear optical properties can
be described in terms of the three principal sus-
ceptibilities, directly deduced from the three sca-
lar invariants of ‘i."z Three other quantities give
the relative orientation of the index ellipsoid with
respect to the coordinate system.

The lowest-order optical nonlinearities such as
frequency-mixing phenomena or par_Pmetric pro-
cesses arise from the polariza.t_i.on ®(w,) related
to the electric fields E(w,) and E(w,) by

5(‘03 =W+ W,) = 2d(w;, W, wp):i E(%)E(wa), (2)

where d is a third-rank tensor_,. and whe_r’e E(wl)
E (w,) is the direct product of E(w,) and E(w,).

We present in this paper the decomposition of
a third-rank tensor in irreducible tensors based
on the three-dimensional rotation group which
leads to the definition of scalar invariants of d.
We then apply the results to find specific relations
among the second-harmonic generation (SHG) co-
efficients d;;,(2w, w, w) and among the linear elec-
trooptic effect (LEO) coefficients d,;;(0, w, w).?

The decomposition can be applied as well to
other physical processes like piezoelectricity or
extended to higher -order phenomena. Irreducible
spherical tensors have been also successfully in-
troduced for interpreting second-harmonic light
scattering in liquids.*

II. IRREDUCIBLE PARTS OF THIRD-RANK TENSOR

The decomposition of a Cartesian rank-z ten-
sor as the sum of parts of weight J (/=0,1,2, ...,
n) irreducible under the three-dimensional rota-
tion group has been considered by several au-
thors.>® It has been shown that anirreducible rep-
resentation of rank » and weight J has 2J+1 in-
dependent components and can be expressed in
terms of an irreducible tensor of rank J. Ac-
cording to Schouten’s notation, ° the irreducible
tensors of rank 0, 1, 2, 3 corresponding to d are,
respectively, called pseudoscalar, vector, pseudo-
deviator, and septor. A pseudodeviator is a
symmetric and traceless second-rank tensor;

a septor is a fully symmetric and traceless third-
rank tensor. The traces or the contractions of
a third-rank tensor are the vectors

2idisss Zlgny 20idsie-
In a general way, it is possible to consider d
as the sum

g___g(O) +(_i(1)+d_(2) +(—1_(3) =Zj Q(J) s (3)

where d/) =d"'D 4 eee pgtimp) @)
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my being the number of independent weight J ten-
sors involved in the decomposition.

For a crystal of lowest symmetry (point group
1) there are no symmetry requirements on the
d;; when the three frequencies w;, w,, and ws
are different (asymmetric case); but for SHG and
LEO two frequencies are the same and the coef-
ficients of d are symmetric in the two last indices
(symmetric case). Further simplification occurs
when the crystal is nondispersive; as shown by
Kleinman' d; ;» does not depend on the per mutations
of the three indices 4,4, 2 (fully symmetric case).
The numbers m,; corresponding to the three dif-
ferent cases are indicated in Table I.

We now express the tensors g“” in terms of
the components d;;, using the technique of Coope
etal.®

A. Pseudoscalar

Totheirreducible tensor of weight 0 corresponds
a pseudoscalar A according to®

2(0)2%74_9_ (5)

where e is the completely antisymmetric third-
rank tensor® and A the quantity defined by

A =dygg +d331 +dy1p ~dygp ~ dgyz ~ dszy

==22 €indyy; - ®)

i, 4k

The term A is responsible for frequency mixing

in liquids® and obviously vanishes for the symmetric
and fully symmetric cases.

B. Vectors

It is well known! that any contraction (or trace)
of a tensor is irreducible under the rotation group.
For d there are three contractions, which are the
following vectors:

Vi=lidy (7)
Vi=Dedun » )
Visldi - (9)

The contractions are the only independent vectors.
The three weight-1 third-rank tensors of the

TABLE I. Decomposition of a third-rank tensor in
irreducible parts according to the symmetries in the
indices. The number N of independent coefficients d;;,
can be deduced from N=Z2;(2J+1)m

Case my my my mg N
Asymmetric 1 3 2 1 27
Symmetric 0 2 1 1 18
Fully symmetric 0 1 0 1 10




2 INVARIANTS OF THE THIRD-RANK CARTESIAN TENSOR-

decomposition (4) are, using the second-rank unit
tensor u;,, '° given by

A =f @Viug —upVi-uy; Vi), (10)

d(iji) ~1o (-v? iU +4uth ijvi) ’ (11)

d(§}2)=% (- Vsiujk —uikvg‘ +4uijv?z) . (12)
In the symmetric case it is easy to see from
Eqgs. (8) and (9) that V3=V?®; when Kleinman’s re-
lations hold (fully symmetric case) there is only
one vector V (V=V!=V2=V?) and

d:]jk) =% (Viujk+u,-ij+u”Vk) . (13)
C. Pseudodeviators

Two pseudodeviators Dland D? (each of them
having five independent components) are involved
in the decomposition of a third-rank tensor in ir-
reducible parts; they are

Diy==%22 Cumdmi+esimdmy) -5 Auy, (14)

i,m

D%j=" B Z (dzlmemlj +djlmemli)_ 5 Auyye (15)

l,m
Since D is traceless, the 3x3 matrix associated
with each of the pseudodeviators has three eigen-
values D, D4, D,, such that
D, +Ds +D,=0. (16)
As a function of D* and D? the two weight-2 third
rank tensors can be expressed as
d(ia;kl)=iz (Zeinl)}k +D]1:leljk) (17)
d(312)~3 Z (eul'le +2-Dileljk) (18)
We already mentionedthatA =0inthe symmetric
case. Since e,;; == ey, it follows from Eq. (15)

that D2=0 in that case. Both D! and D 2 are equal
to zero in the fully symmetric case.

D. Septor

By making d fully symmetric and traceless one
obtains the vector part, which has seven indepen-
dent components. With the definitions

A = g +djps +dpay +dpgs +d i +dygg) , (19)
=3 (Vvi+vi vy, (20)

it is found that
3 Vit , (21)

where ¢, equals 3 for i=j=F, ;= 1when two of the
three indices ijk are the same, and #,, =0 otherwise.

di!k = dtik

III. SCALAR INVARIANTS

The decomposition in irreducible parts leads im-
mediately to the definition of several scalar invari-
ants of d as, for instance, 1A |, the magnitudes of
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the vectors V!, V%, and V° (inthe case of piezo-
electricity | V!l is known'! as the “hydrostatic
piezoelectric coefficient” ) or the magnitudes of
the six eigenvalues such as D1 Inthe symmetric
case (SHG and LEO) V' and V2 vanish except
for the polar (pyroelectric) classes and are both
parallel to the polar axis in the case of the point
group 2 and of all the point groups of hlgher sym-
metry. The specific magnitudes of V'and V2 corre-
sponding to the different point groups are listed in
Table II.

We now consider in more detail the fully sym-
metric case, for which the decomposition of d is
very simple: -

g=g_(1) +(_i_(3’ . (22)

Therefore we can say that the optical nonlinearities
are the superposition of two parts: a so-called
vector part d*’ and a septor part d'*’.

To the vector part we assoc1ate one scalar in-
variant, the magnitude V of V. Ageneralformula
can be written for the orthorhombic, tetragonal,
trigonal, and hexagonal systems,

V=1| dsu_ +d322 +d333 [ (23)

The septor part d(a’ has seven independent com-
ponents in the case » of the lowest symmetry (point
group 1). Since the choice of V as an axis of the
coordinate system takes only two degrees of free-
dom, it is possible todefine six independent scalar
invariants. For crystals of higher symmetry this
number is lowered. Nevertheless there is always
at least one scalar invariant S, and we define it
as the square root of the sum of the squares of all
the coefficients of the septor (see Table II).

Direct and simple use can be made of the scalar
invariants V and S for interpreting previously re-
ported*?'*® theoretical relations among the coef-
ficients d;;. In a quantal treatment of optical
nonlinearities in solids, > Robinson expands the
perturbation potential Uin terms of harmonic
polynomials »* Y'} 6, @)t

V= Z U337’ 317" Yl + U IIVY (24)
and considers the assumption
m
Usl =0 ’ (25)

so that U satisfies Laplace’s equation. As a con-
sequence, the Miller §’s'® are found to be related
by

8440 +0445 +0ipp =0, (26)

The Cartesian third-rank tensor 6 can be,
like d, decomposed inirreducible parts. Ouranal-
ysis shows that Eq. (26) will be obtained every
time the vector part is assumed to be zero, asfor
instance, by choosing U obeying Laplace’s equa-
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TABLE II. Scalar invariants associated to the vector part (symmetric case) and to the septor part (fully symmetric
case) for the different classes.

Class vt V2 S

43m, 23

i2m

222 0 0 (V6) dygg

6mm, 6

dmm, 4 2d311 +dyyy 2d 131 +ds3a3 (VB (Bdgyy —dygy)

6m2 0 0 2dyy

6 0 0 2[(d111)2 +(d2“)2]1/2

7 0 0 (V 6)[(dgp9)° + (dgy) 1"

32 0 0 2dyy

3m 2d31q +dszy 2dy31 +d3gs [% (3dgy - d333) +4(d211) i

3 2d34q +dggg 2d31 +d3g3 £ (3d311 dgy)? +4(d211) +4(du1)2]m
mm2 d3yq +dggy +dsgg dy31 +dagy +d3g3 [3 (d319)* +3 (dy20)? + (dggy)® — 5 (V912

tion. Expanding U in terms of harmonic polynomials

belongs to the same approach as considering the
rotational invariance of d: The 2J+1 harmonic
polynomials Y7 are a coordinate system for the
subspace associated with the irreducible Cartesian
tensor of weight J.!® Equation (25) is therefore
equivalent to V=0. If, on the other hand, one as-
sumes that there is no septor part involved in the
nonlinearities, the value of S for point groups 4mm
and 6mm(see Table II) indicates

dszs=3dgy , (27)

which is the result given by Robinson'? for the sole
perturbation in U being an internal field.

In another paper!® and following a different ap-
proach, Robinson studied theoretically the optical
nonlinearities in RX compounds which crystallize
in one or both of the cubic (zinc-blende) and hexag-
onal (wurtzite) systems with nonlinear coefficients
d$j and d',f,,,, respectively. By ascribing the non-
linear polarizability to the undistorted RX, tetra-
hedral units, he obtained

- 2%, = - 2d" 5 =dlyy , (28)
d’:;33= (Z/ﬁ)dfag . (29)

According to our analysis, Eq. (16) is just a
statement of the fact that any vector part has been
omitted (V'=0=V?) a priori by assuming the tetra-
hedron RX, regular. By contrast Eq. (29) cannot
be derived from rotational invariance considera-
tion; it gives the relation between the septor parts
of the hexagonal and cubic structures built from
the same regular unit.

It is interesting to note that any vector part has
been implicitly neglected in Levine’s calculations.!’
The validity of this assumption for the wurtzite
structure will be discussed in Sec. IV.

IV. SPONTANEOUS POLARIZATION AND OPTICAL
NONLINEARITIES

The analysis whichhas just beendeveloped empha-
sizes a basic difference in the optical nonlinearities
of nonpolar compared to polar crystals: Only the
latter have a vector contribution to SHG and LEO.
Since the polar crystals can also be defined by the
ex1stence of a spontaneous polarization (ps, parallel
to V! and V2, one is led to compare the magnitudes
of the three vectors. Firstdemonstrated by Miller!®
in barium titanate (BaTiO,), correlations between
spontaneous polarization and optical nonlinear prop-
erties have been studied experimentally and theo-
retically in several ferroelectric materials, 1°-2
but no simple and general relation has been estab-
lished. In order to find such a relation, the 6 for-
mulation®® will be used and the cases of SHG and
LEO will be considered successively. As a conse-
quence of the relations between d,, (2w, ww)[or d,;;
(0, w, )] and &, ,[or p; ], the decomposition of the
tensors 8 and p in irreducible parts is the same as
for d.

A. Second-Harmonic Generation

For all the materials studied until now Klein-
man’s relations are satisfied. We therefore as-
sume the whole vector part of § described by

= | 8311 + O3z + Ogag | (30)

The evaluation of v depends on the relative signs
of the coefficients 6;;,. Such signs have been de-
termined in LiNbO;, LiTaOj; BaTiO;, ZnO,
LiGa0,,?® and LilO,.2* By Maker fringe experi-
ments® we found opposite signs for 84, and 44
in CdS but the same sign for 63, and 8435 in
Ba,NaNb;O,; as theoretically predicted. %°
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Values of » and ®; corresponding to the materi-
als for which a reliable complete set of data has
been obtained are listed in Table III. As illustrated
by Fig. 1, comparison of v and @ indicates the
vector part to be proportional to the spontaneous
polarization

v=(0.10+0.03)x10" %@, esu, (31)

coefficients 6 versus ®g leads to a considerably
greater dispersion. % One can also note that the
ratios v/@®, for K;Li,Nb;O,5 and the ferroelectric
phase of KDP agree with Eq. (31), provided the
theoretically predicted relative signs are assumed?’*®
(see Fig. 1).

The wurtzite-type materials ZnO, CdS, and ZnS
are not ferroelectric; their spontaneous polariza-

where @, isin u Cem™. A plot of the individual tions cannot therefore be easily measured but have

TABLE III. Values of v= [ 8311 + 0399 + 0333 [ and of the spontaneous polarizations for polar materials. 6 and v are in
10~ esu units, ® in uC cm-2, Values inside parentheses have been computed assuming theoretical results on the rela-
tive signs of the coefficients 6. The value of 83y for KDP in the paraelectric phase is 1.7%107¢ esu. Values of ® in-

side brackets are estimated values.

N° Material Class 0311 O399 8333 v ®s
1 ZnO 6mm —0.54 1.80 0.7£0.15 [6]
(Ref. 15) (Ref. 15) (Ref, 27)
2 cds 6mm —-0.822 1.63% 0.02+0.15 [3}
(Ref. 27)
—1.5" 2.6° 0.4 +1.2
3 Zns 6mm +1.6° 3.1° [2]
(Ref. 27)
4 LilO, 6 2.85 4.7 10.4+1
(Ref. 24)
5 LiNbO, 3m 0.61 5.9 _ 7.2+1.9 71°
(Ref. 20) (Ref. 20)
0.51¢ 3.9¢ 4,9+1.1
6 LiTaO, 3m 0.16 2.7 3.1+ .4 50°
(Ref. 20) (Ref. 20)
7 BaTiO; dmm 1.3 0.56 3.2+ .2 26°
(Ref. 18) (Ref. 18)
8 K;LiyNb;Oy5 dmm +0,8 1.8f 3.4% .5) 25¢
9 Ba,NaNb;O;5  mm2 1.28 1.4" 1.8" 4,4%0.5 40°
10 KDP mm2 2.1 +1.4 0 0.7+ .4) 4.8
(Ref. 19) (Ref. 19) (Ref. 19)
11 LiGaO, mm2 0. 061 -0.14} 0.49} 0.4+ .2
12 NaNO, mm2 -1.85% 0.75% 6.4!
13 TGS 2 0 £0.005 0.013 2, 9m
(Ref. 29) (Ref. 29) (Ref. 29)
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FIG. 1. Plot of the vector part v = | 8344 + 0339 + 5333 |
in 107 esu as a function of the spontaneous polarization
@ in pCem™2, Values of » and  correspond, for each
material, to the same temperature. Each material is
indicated by its number, according to Table III. For
LiNbOj; (5) the average of the two values of v given on
TablelIll has been plotted. The dashed line corresponds
to the mean value of the ratio v/@®.

been estimated.?’ As a result, values of v deduced
from Eq. (31) are in good agreement with experi-
mental data. The higher value of ®; in ZnO com-
pared to CdS and ZnS is consistent with the bigger
distortion of the tetrahedron unit (the crystallo-
graphic ratio c¢/a equals 1. 602 while for an ideal
wurtzite structure c/2=1.633),%®

The magnitude of the vector part for triglycine
sulfate (TGS) deduced from experimental data®® (in
any of the two alternatives for the relative sign of
8405 and O445) is 10 to 20 times lower than the value
given by Eq. (31). Reasons for such a discrepancy
can be found in the special character of the TGS
structure, on the basis of a theoretical model ex-
plaining Eq. (31).%

B. Linear Electrooptic Effect

In an attempt to correlate the vector part of the
LEO tensor p and the spontaneous polarization it is
necessary to make firsta distinction between clamped
(or high-frequency or constant-strain) and unclamped
(or low-frequency or constant-stress) phenomena.
Since the latter depend greatly on piezoelectric and
photoelastic properties, we will consider only the
clamped quantities.

Despite that LEO has been known and studied for
a long time, there are few materials for which the
vector part and especially V2 can be evaluated; they
are listed on Table IV, where the values of the

quantity
A} = [pSuy + PGz +PSss | (32)

are also indicated. The comparison of A, and ®

JERPHAGNON

Ino

shows a linear dependence

Al=(4.5+ 1) x107% @ esu,
where @, is in uCcm=2.
V. DISCUSSION

The validity of phenomenological rules such as
those given by Eqs. (31) and (33) does not rely
only on the direct experimental confirmation, but
also on the self-consistency of the conclusions to
which they lead. In that respect it is worth noting
the agreement between the values of ®; for LilO,
deduced from Eqs. (31) and (33): 105+30 and
145120 uC cm™?%, respectively.

It is indeed possible to predict, from Eq. (31)
or Eq. (33), values for nonlinear coefficients
(@%2%%2 = 0. 5d%2F )or for spontaneous polarizations
(®L162% = 4 ,C cm™2). But among all the conse-
quences of a linear relationbetween the vector part of
the optical nonlinearities and the spontaneous polar-
ization, we would like to emphasize a particularly
simple and useful one. It has been demonstrated
by Abrahams et al.3!thatthe spontaneous polariza-
tion is, in displacive ferroelectric crystals, pro-
portional to the atomic displacement Az. One can
therefore, for this particular group of crystals,
relate the SHG coefficients to the atomic positions

(33)

TABLE IV. Values, for LEO, of the clamped vector
part Al= [ p§y +0%, +0§s5| in 107 esu, at the wavelength
For wurtzite materials calculated values of Al

6327
using Eq. (33) and estimated ®; are indicated.
Material Class A} @, ALie,  Alcale)
ZnO 6mm 615 [6] [1) 26
(Ref. 27)
cds 6mm 415 [3] [1.5] 14
(Ref., 27)
ZnS 6mm 0+15% [2] [0} 9
(Ref. 27)
LilO, 6 660 £100°
LiNbO; 3m  320+40%¢ 71° 4.5
LiTaO; 3m 235307 50° 4.7
BaTiO, 4mm 103+158 26 4.0 .
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in the crystallographic structure® by the linear
equation

v=(24+5)x10%Az esu. (34)

Little attention has been paid so far to the septor
part of 5 or p which is correlated to an “octupole”
moment. The physical interpretation is not as ob-
vious as for the vector part but use can be made of
S for studying phase transformations. As anexam-
ple, let us consider the transition at low tempera-
ture, of KDP from a paraelectric phase (42m) to a
ferroelectric one (mm2). Above the Curie temper-
ature the SHG properties of the tetragonal struc-
ture are completely described by the septor scalar
invariant o, (in the 6 formulation). On the other
hand, both », and o, are allowed by the ortho-
rhombic structure. The vector part v, has been
shown to be related to the spontaneous polarization
@® s while the septor parts ¢, and 0, are experimen-
tally the same (see Tables II and III). Allthe changes
in SHG properties of KDP at the phase transforma-
tion can therefore be explained in terms of avector
contribution in the ferroelectric phase.

VI. CONCLUSION

The optical nonlinearities of crystals have
been analyzed from a new and fundamental point
of view which differentiates polar from nonpolar
materials on the basis of a vector contribution
to the phenomena described by a third-rank
tensor. The decomposition into vector and sep-
tor parts allows a general explanation of pre-
viously reported theoretical results and strongly
suggests simple relations between different phys-
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ical properties. The so-called vector part has
been shown to be proportional to the spontaneous
polarization and new relations among optical non-
linear coefficients have been consequently estab-
lished.

Note added in manuscvipt. Discussions with Dr.
J. A. Giordmaine, Dr. R. C. Miller, and Dr. D.
A. Kleinman drew our attention to the fact that in-
formation about the signs of the nonlinear coeffi-
cients can be deduced from the results reported
above. For both SHG and LEO, there is a propor-
tionality between the spontaneous polarization 53
and the vector Vi, The sign of the scalar product
V!. @, is therefore the same for all the mate-
rials. This has been demonstrated in the case
of SHG by Miller and Nordland,*® who found
Vi.®, <0, for LiNbO;, LiTaO;, BaTiO;, ZnO,
and also for Ba,NaNb;O;s.3* We deduce that
dsy; and dgg3 are negative for LilO; while dyy
is negative and djy, positive in the ferroelectric
phase of KDP. The experiments performed in
LiNbO; by Hulme et al.% show that 7 is posi-
tive. Since p,;; (0,w,w) and 7;,(w) have oppo-
site signs, V!. ®, is negative for LEO.
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Ultrasonic Beam Mixing as a Measure of the Nonlinear
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The mixing action of two crossed ultrasonic beams has been studied. The theoretical

treatment of Taylor and Rollins is extended to include the all-pure-mode cases for the prosess
- Wy Wy =Wy
L (w1) T {wl _wz} . T{ Wy }

in cubic single crystals. Five such cases exist in cubic crystals; two in the (001) mixing plane
and with L (w;) propagated in either of two fixed directions [100] and [110]; and the other
three in the (110) mixing plane and with L (wy) propagated in any of three fixed directions
[110], [111], and [001]. The transverse waves are polarized normal to the mixing plane in
all five cases and propagate in directions within the plane corresponding to the selection rules
on frequency and propagation vector. The conversion efficiency was measured over a range
of input frequency ratios, a=w,/w; for the two independent transverse-polarization states
for the above process in fused silica and for the two pure-mode cases in the (001) plane in
NaCl. A comparison technique using the interchange equivalence of T(w;) and T'(wy — w,) effec-
tively eliminated the transducer-bond efficiencies. These measurements were used to deter-
mine two of the three independent third-order elastic constants of fused silica. In the case
of NaCl, the two ratios of linear combinations of second- and third-order elastic constants
corresponding to the two (001) -plane pure-mode cases were determined. The above com-
parison technique was not applied to the other three pure-mode cases because the transverse
anisotropy in the (110) plane leads to refractive effects on the transverse beams that render
the technique inapplicable.

I. INTRODUCTION to the particular ratio of their frequencies, a third
ultrasonic wave generally radiates from their com-
In this investigation we explore the mixing action mon volume of intersection. The third wave prop-
in the crossing of ultrasonic beams and the mea- agates in still another direction so that there is a
surement of the conversion efficiency to determine conservation relation among the three propagation
parameters characterizing the nonlinearity of ma- vectors involved. The third wave has either the
terials. When two large-amplitude ultrasonic sum or difference frequency of the two primary

waves intersect in a solid at an angle appropriate waves depending on the particular mode combination.



